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ABSTRACT

Characterization of the error associated with satellite rainfall estimates is a necessary component of

deterministic and probabilistic frameworks involving spaceborne passive and active microwave mea-

surements for applications ranging from water budget studies to forecasting natural hazards related to

extreme rainfall events. The authors focus here on the relative error structure of Tropical Rainfall

Measurement Mission (TRMM) precipitation radar (PR) quantitative precipitation estimation (QPE) at

the ground by comparison of 2A25 products with reference values derived from NOAA/NSSL’s ground

radar–based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to

compare the new 2A25, version 7 (V7), products that were recently released as a replacement of version 6

(V6). Moreover, the authors supply uncertainty estimates of the rainfall products so that they may be used

in a quantitative manner for applications like hydrologic modeling. This new version is considered su-

perior over land areas and will likely be the final version for TRMMPR rainfall estimates. Several aspects

of the two versions are compared and quantified, including rainfall rate distributions, systematic biases,

and random errors. All analyses indicate that V7 is in closer agreement with the reference rainfall

compared to V6.

1. Introduction

Given their quasi-global coverage, satellite-based

quantitative rainfall estimates are becoming widely used

for hydrologic and climatic applications. Characterizing

the error structure of satellite rainfall products is rec-

ognized as a major issue for the usefulness of the esti-

mates (Yang et al. 2006; Zeweldi and Gebremichael

2009; Sapiano andArkin 2009;Wolff and Fisher 2009) as

underlined by the Program to Evaluate High-Resolution

Precipitation Products (Turk et al. 2008) led by the

International Precipitation Working Group (IPWG; see

http://www.isac.cnr.it/;ipwg/). In this study, we focus on

the Tropical Rainfall Measurement Mission (TRMM)

precipitation radar (PR) quantitative precipitation es-

timation (QPE) product.

The TRMMPR is currently the only active instrument

dedicated to the measurement of rainfall from a satellite

platform conjointly with a radiometer [TRMM Micro-

wave Imager (TMI)]. PR measurements are considered

as the starting point for subsequent algorithms that use

microwave measurements from low-earth-orbiting sat-

ellites and for combined end products that utilize data

from geostationary satellites (e.g., Yang et al. 2006;

Wolff and Fisher 2008; Ebert 2007; Bergès et al. 2010;

Ushio et al. 2006). A number of studies have inves-

tigated the quality of PR estimates in various regions

of the world (e.g., Adeyewa and Nakamura 2003;

Lin and Hou 2008; Michaelides 2008; Wolff and Fisher

2008, 2009). Over the United States, Amitai et al. (2009,

2012) have compared the PR with the National Oce-

anic and Atmospheric Administration/National Severe

Storms Laboratory (NOAA/NSSL)’s ground radar–based
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National Mosaic and QPE system (NMQ/Q2). Our aim

is to perform a systematic and comprehensive compar-

ison of the new PR 2A25, version 7 (V7), products that

were recently released as a replacement for version 6

(V6) over the southern conterminous United States

(CONUS). This will likely be the final version of TRMM

PR rainfall estimates, and a major outcome of this study

is to supply uncertainty estimates for users of the data.

This new version is considered superior over land areas

compared to the previous versions because of changes

to the vertical profile of hydrometeor characteristics, which

affects the reflectivity-to-rainfall rate (Z–R) relationship

and attenuation correction. Finally, a correction for non-

uniform beam-filling (NUBF) effects was reintroduced.

The methodology and framework followed here are

described in a previous paper dedicated to the evalua-

tion of 2A25, V6 (Kirstetter et al. 2012). The PR QPE

product was assessed with respect to an independent

reference rainfall dataset derived from high-resolution

measurements using NOAA/NSSL’s NMQ/Q2 (Zhang

et al. 2011). These products yield instantaneous rain-

fall rate products over vast regions including the

CONUS. A systematic and comprehensive evaluation

for regions over the southern CONUSwas performed by

characterizing errors in PR estimates bymatching quasi-

instantaneous data from Q2 at the ;5-km-pixel mea-

surement scale of PR in order to minimize uncertainties

caused by resampling. The study used 3months (March–

May 2011) of satellite overpasses over the lower

CONUS (up to 368N). Despite the seemingly short pe-

riod for evaluation, the use of gridded Q2 data for ref-

erence provided a large sample size totaling 392 713

nonzero PR reference pairs. The exact same reference

dataset that was used to evaluate V6 is used in this study

for V7.

The PR andQ2 reference data are briefly described in

section 2. In section 3 we assess the differences in the

probability density functions (PDFs) of rain rate for

2A25, V6 and V7, and their ability to represent rainfall

variability. A quantitative comparison of empirical error

models for V6 andV7 estimates versus reference rainfall

is provided in section 4. The paper is closed with con-

cluding remarks in section 5.

2. Data sources

a. Q2-based reference rainfall

All significant rain fields observed coincidentally by

TRMM overpasses and the Next Generation Weather

Radar (NEXRAD) network from March to May 2011

are collected. TheNMQ/Q2 products closest in time to the

TRMM satellite local-overpass schedule time are used.

The NOAA/NSSL National Mosaic and Quantitative

Precipitation Estimation system (http://nmq.ou.edu;

Zhang et al. 2011) combines information from all

ground-based radars comprising the Weather Surveil-

lance Radar-1988 Doppler (WSR-88D) network to de-

rive experimental radar-based products comprising

high-resolution (0.018, 5 min) instantaneous rainfall rate

mosaics available over the CONUS (Zhang et al. 2005;

Lakshmanan et al. 2007; Vasiloff et al. 2007; Kitzmiller

et al. 2010). At hourly time steps, Q2 adjusts radar es-

timates with automated rain gauge networks using

a spatially variable bias multiplicative factor. A radar

quality index (RQI) is produced to represent the radar

QPE uncertainty associated with reflectivity changes

with height and near the melting layer (Zhang et al.

2012). One should note that it is not possible to ‘‘vali-

date’’ the PR estimates in a strict sense because in-

dependent rainfall estimates with no uncertainty do

not exist. Many errors affect the estimation of rainfall

from ground-based radars, such as nonweather echoes,

NUBF, range dependency due to vertical profile of

reflectivity (VPR) variability, conversion of Z to R,

and calibration of the radar signal [see Villarini and

Krajewski (2010) for a recent review]. While several

procedures are already in place within the Q2 system

to correct for these errors, additional postprocessing

steps were taken to refine the reference dataset as much

as possible. The original Q2 products utilized in this

study are (i) the radar-only instantaneous rain-rate na-

tional mosaic updated every 5 min, (ii) the radar-only

rain-rate national mosaic at hourly time steps, (iii) the

hourly rain gauge–corrected national mosaic product,

and (iv) the RQI. The reference rainfall is derived from

an instantaneous bias-correctedQ2product. Instantaneous

Q2 products are adjusted using a spatially variable

multiplicative bias field to minimize the aforementioned

errors: pixel-by-pixel ratios between the hourly gauge-

adjusted products and the hourly radar-only products

are calculated and applied as multiplicative adjustment

factors to the radar-only 5-min product. Extreme ad-

justment factors (outside the 0.1–10 range) are discarded

so the gauge adjustment also serves as a data quality

control procedure. To eliminate overestimation in the

bright band and mitigate range dependency caused by

VPR effects, a filtering is finally applied using the RQI

index so only Q2 estimates representing the best mea-

surement conditions (i.e., no beam blockage and radar

beam below the melting level of rainfall) are retained.

One must keep in mind these improvements may not

screen out all possible errors in ground-based radar

estimates.

The reference rainfall Rref is computed from a block-

Q2 rainfall pixel matching each PR pixel. All of the Q2
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pixels (rainy and nonrainy) found within an approxi-

mate 2.5-km radius around the center of the PR pixel

location are considered to compute unconditional mean

rain rates for the Q2 at the PR pixel scale. The estima-

tion reference quality is assessed using a standard error

sfootprint that is computed alongside the mean reference

rainfall value. It represents the variability of the Q2

rainfall (at its native resolution) inside the PR footprint

and is used to select the PR-Q2 reference pairs for which

the Rref is trustworthy [see Kirstetter et al. (2012) for

more details]. The reference pixels are segregated into

‘‘robust’’ (Rref .sfootprint) and ‘‘nonrobust’’ (Rref ,sfootprint)

estimators. Nonrobust reference values are discarded

for quantitative comparison in this study. The current

technique preserves the PR rainfall statistical charac-

teristics (the product remains free of undesirable im-

pacts caused by resampling) and increases the reliability

and representativeness of our ground reference.

b. Precipitation radar–based rainfall

The PR measures reflectivity profiles at Ku band.

Surface rain rates are estimated over the southern

United States up to 368N [see Fig. 1 of Kirstetter et al.

(2012)]. The scan geometry and sampling rate of the PR

lead to footprints spaced approximately 5.1 km in the

horizontal and along track, over a 245-km-wide swath.

The TRMM product used in this work is the PR 2A25

product (versions 6 and 7) described in Iguchi

et al. (2000, 2009), which provides 3D reflectivity and 2D

rain-rate fields at the ground. The 2A25 algorithm relies

on a hybrid attenuation correction method that com-

bines the surface reference technique and Hitschfeld–

Bordan method (Iguchi et al. 2000; Meneghini et al.

2000, 2004). Retrieval errors of the algorithm have

mainly been attributed to the uncertainty of the assumed

drop size distribution (DSD), incorrect physical as-

sumptions (freezing-level height, hydrometeor temper-

atures), and NUBF effects (Iguchi et al. 2009). Some of

the weaknesses previously reported in performance with

V6 (i.e., underestimation of rain rates) over land com-

pared to over sea (Wolff and Fisher 2008; Iguchi et al.

2009) are expected to improve asZ–R relationships over

land were recalibrated and the NUBF correction, which

was abandoned in V6, was reintroduced in the new V7

product.

3. Rainfall data analysis

The case of PR having zero rainfall when it is raining

(according to the reference) was addressed in Kirstetter

et al. (2012, their section 3a) and highlighted the poor

detection performances of the PR of light rain rates

(Schumacher and Houze 2000). The major changes

from version 6 to version 7 address rather the quanti-

tative estimation of rainfall in 2A25 products than the

detection of rainfall itself. Accordingly, we did not find

any significant differences in performances in rain-

fall detection from the two versions, so we focus here-

after on specific cases when both PR and reference are

nonzero.

FIG. 1. Probability distributions of rain rates for the reference rainfall (gray) and for PR rainfall (black)

using (left) V6 and (right) V7. The ‘‘robust’’ reference rain rates are used. The solid and dashed–dotted lines

represent the distribution by volume PDFy and by occurrence PDFc, respectively. Note that the x axis is in log

scale.
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a. Probability distributions by occurrence and by
rain volume

Two PDFs for PR versus Q2 reference rainfall are

computed and shown in Fig. 1: (i) the PDF by occur-

rence (PDFc) and (ii) the PDF by rain volume (PDFy)

(Wolff and Fisher 2009; Amitai et al. 2009, 2012;

Kirstetter et al. 2012). The PDFc represents the proba-

bility of rain-rate occurrence and tends to emphasize

lighter rainfall rates. The PDFy represents the relative

contribution of each rain-rate bin to the total rainfall

volume. Compared to Q2’s reference PDFc, both 2A25

versions tend to sample more light rain rates (;0.3–

0.5 mm h21) and demonstrate poor detection of the

lightest rain rates (below ;0.3 mm h21). A possible

explanation is the edges of rain areas might be only

partially detected by PR because they are associated

with low rain rates and intermittency (Kirstetter et al.

2012). The detectability issue is related to the sensitivity

of PR and is thus not readily correctable with an update

to the processing algorithm. However, it is noted that

the mode of V7’s PDFc is shifted toward higher values

than V6’s and is more consistent with the mode of the

reference PDFc. In examining the rain-rate distributions

by volume, we see the modes of PDFy for both V6 and

V7 are shifted toward lower rain rates compared to the

reference’s mode (;60 mm h21), which agrees with the

results found in Amitai et al. (2006, 2009). This has been

attributed to high rainfall rates (.10 mm h21), which

are likely underestimated by PR because of one or more

of the following reasons: insufficient correction due to

attenuation losses, NUBF effects, and inaccurate

conversion from Z to R (Wolff and Fisher 2008). V7

presents a PDFy in better agreement with the reference

than V6. Themode of the PDFy has increased from 18 to

25 mm h21, indicating a positive impact from theNUBF

correction, correction of attenuation, and/or Z–R im-

provements over land.

b. Correlations and biases

Density-colored scatterplots of PR versus reference

rainfall are presented for the two versions of 2A25 in

Fig. 2. Better agreement with the reference (i.e., in-

creases) in V7 is evident particularly for reference

rainfall values greater than 30 mm h21. In addition, the

relative underestimation from V6 at lighter rain rates

(,1 mm h21) has now been mitigated in V7. We also

provide common comparisonmetrics in Table 1. A rainy

pixel is included in the statistics if both PR and the ref-

erence are nonzero. The V6 and V7 estimates are both

subjected to the same discrepancies in spatiotemporal

matching with the Q2 reference, which is a source for

FIG. 2. Scatterplots of (left) 2A25, V6, and (right) 2A25, V7, vs reference rainfall (mm h21). The 1:1 lines (solid lines)

are displayed.

TABLE 1. Performance criteria values for PR estimates: mean,

standard deviation, mean relative error (MRE), mean square error

(MSE), and correlation (R) with respect to references. Only the

reliable Q2 data are kept (see section 2b) for references.

PR 2A25 Reference Version 6 Version 7

Mean 7.27 5.60 5.97

Std dev 13.76 8.26 9.8

MRE — 223% 218%

MSE — 112 102

Correlation w.r.t. reference — 0.64 0.68
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differences on a point-to-point comparison basis, so

their relative differences can be directly attributed to

algorithms themselves. PR shows lower mean values

than the reference rainfall in both versions. However,

regarding the average bias with the mean relative error

(MRE), the V7 products present less difference (218%)

than the prior version (223%). Note that Amitai et al.

(2009) found an underestimation of less than 10%,

which may be attributed to differences in the compari-

sonmethods, that is, including nonzero values inmatched

pairs and differences in data quality steps impact the

MRE. From the mean square error (MSE) used to charac-

terize the random estimation error, the V7 products pres-

ent fewer discrepancies from the reference (102 mm2 h22)

than the prior version (112 mm2 h22). This shows a

positive impact of the new processing (i.e., recalibrated

Z–R relationship over land and NUBF correction). The

correlation coefficients between both versions of PR

rainfall and Q2 reference estimates are moderate, but

we note the correlation with V7 has improved slightly.

Improving both the systematic part (MRE, 5% improve-

ment) and the random part of error (MSE, 9% improve-

ment) of the 2A25 products is noteworthy. Ciach et al.

(2000) show that postprocessing optimization of a rain-

fall product relative to a reference can be done by im-

proving the bias or the mean square error, but not both.

PR, version 7, shows improvements in both bias and

MSE, which can be only obtained by a more accurate

processing of the radar signal relative to version 6. The

correction of the largely underestimated rain rates in

going from V6 to V7 (see Fig. 2) certainly contributes to

this improvement.

c. Error models

The uncertainties associated with satellite estimates

of rainfall include systematic errors as well as random

FIG. 3. (a),(b) PR residuals represented vs reference and (c),(d) the corresponding GAMLSS model fitted and

represented by 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 95 conditional quantile lines for (a),(c) 2A25, V6, and (b),(d)

2A25, V7. The dotted lines represent the cumulative distribution function of the reference rainfall.
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effects from several sources (Yang et al. 2006; Kirstetter

et al. 2013). In a similar manner with Kirstetter et al.

(2012), the departures of PR estimates from the Q2 ref-

erence values are analyzed in this section on a point-to-

point basis. With the true rainfall being unknown, the

residuals are defined as the difference between the ref-

erence rainfall and the satellite estimates R: «5R2Rref.

Only pairs for which Rref and R are both nonzero are

considered in the calculations. The sets of « distribu-

tions are studied using the generalized additive models

for location, scale, and shape (GAMLSS) technique

(Rigby and Stasinopoulos 2001, 2005; Akantziliotou

et al. 2002; Stasinopoulos and Rigby 2007). We con-

sider Rref the main driving (explanatory) variable condi-

tioning the departures of PR estimates from reference

values, and we use the reverse Gumbel distribution

f («)5 (1/s)f2[(«2m)/s]2 exp[2(«2m)/s]g) to model

the conditional residual distributions, where the loca-

tion m (mean of the residual population) is to be linked

to systematic errors and s (the standard deviation) is

representative of random errors.

For a given conditional distribution of the response

variable «, the conditional quantiles can be expressed

as a function of Rref. Figure 3 shows the residuals as

a function of Rref as well as the fitted GAMLSS model

for the two 2A25 versions. The conditional PDFs of

residuals present a high conditional shift from the zero

line and a high conditional spread. Note that for Rref *

50 mm h21, the model is quite undetermined because of

the lack of observed residuals. Both 2A25 versions pres-

ent a tendency to underestimate high rain rates relative

to the reference (negative median of residuals); V6 un-

derestimates Rref 5 20 mm h21 with an occurrence of

80% and with a representative bias of 27 mm h21,

while V7 underestimates the same reference value with

an occurrence of 75% and with a representative bias of

26 mm h21. There is better agreement with V7, but the

remaining bias is likely attributed to an inaccurate Z–R

relationship, NUBF effects, and/or insufficient correc-

tion of PR attenuation losses at heavier rain rates.

We consider the conditional median of the residuals

to compare the systematic error component for V6 and

V7 as well as the interquantile (90%–10%) value to

assess the random part of the error. Figure 4 shows the

conditional biases and random errors of both versions of

2A25 relative to the Q2 reference dataset. The under-

estimation with V6 and V7 over a large range of rain

rates induces a global negative bias, which was evident in

Table 1. The conditional biases of both versions relative

to the reference are quite similar but with a slight im-

provement in V7. The random discrepancies increase

consistently with Rref for both products. The random

discrepancies are greater for V7 thanV6, suggesting that

other factors in addition to Rref could be considered to

properlymodel the randomerror ofV7 rain-rate estimates.

d. Nonuniform beam filling and rain types

To provide additional feedback to PRQPE algorithm

developers, impacts of rain type classification and NUBF

on rain rates are investigated. To assess the NUBF, we

quantify the inhomogeneity of Q2 precipitation distribu-

tion within the PR footprint using sfootprint. Figures 5a,b

show the residuals as a function of the NUBF and are

segregated according to the PR-based rainfall type classi-

fication. Q2 standard deviation values (sfootprint) are

greater for convective than for stratiform rainfall. In

fact, convective rainfall generally presents higher rain

rates and variability than stratiform rainfall, as expected.

FIG. 4. (left) Conditional bias (median) of residuals and (right) conditional randomerror (interquantile 90%–10%)of

residuals for 2A25, V6 (blue), and 2A25, V7 (red), as a function of reference rainfall.
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The residuals distribution is also very distinct according

to the rainfall types with more spread in the convective

case.

Consistent with a theoretical study performed by

Iguchi et al. (2009), increasing the NUBF in the PR

beam results in increasing underestimation for the PR

estimates relative to the reference rainfall, whatever the

rainfall type. Figures 5c,d show the systematic and ran-

dom parts of error. The error features are confirmed to

be very distinct according to the rainfall types. The PR

convective systematic biases present a shift toward higher

values compared to stratiform biases. Below NUBF 5
6 mm h21 the convective bias is positive, which may be

caused by the specific Z–R relationship used in the con-

vective profiling component of the 2A25 algorithm. The

random part of the error is consistently greater for con-

vective rainfall. From version 6 to version 7, the system-

atic bias remains the same for stratiform but decreases

significantly for convective rainfall. The random error

decreases for stratiform and convective echoes, illus-

trating the positive impact of the NUBF correction in

version 7. The impacts of the NUBF and rainfall type

classification, however, remain significant and motivate

ongoing and future research.

4. Conclusions

A 3-month dataset of gauge-adjusted, quality-filtered

surface rainfall estimates from the NEXRAD-based Q2

has been used to compare and contrast PR-based 2A25

FIG. 5. Density plots of residuals (PR,V7) vs NUBF estimates for (a) stratiform and (b) convective rainfall. The (c)

systematic part and (d) random part of error are represented for stratiform (blue lines) and convective (red lines)

types and for 2A25, V6 (dotted lines), and 2A25, V7 (solid lines).
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rainfall estimates from the older V6 algorithm and the

newly released version (V7), which will be the final ver-

sion of the TRMM PR rainfall algorithm. A quantifica-

tion of the uncertainty of these rainfall estimates will be

quite useful to users of the data, including hydrologists,

which is the principal aim of this study. V7 includes im-

provements in attenuation correction of the radar signal

and a recalibrated Z–R equation for use over land areas,

and a correction for NUBF effects was reintroduced. The

comparisons have been performed at the PR-pixel reso-

lution over the lower CONUS using a framework pro-

posed in Kirstetter et al. (2012). Our analyses indicate

that the bias of the rain-rate estimates from V7 has been

improved from a prior underestimation bias of 223%

(from V6) to218% relative to our reference. Moreover,

this improvement in reducing bias is accompanied by

no reduction in the correlation coefficient; simultaneous

improvement in both error metrics is quite challenging

andwas found to be a result of simultaneously correcting

overestimation at lighter rain rates (,10 mm h21) and

underestimation at high rain rates (.30 mm h21). The

former correction is most likely a result of the recali-

bration of the Z–R equation over land, while the latter

is likely a result from the NUBF correction; NUBF is

known to cause underestimation at high rain rates

(Iguchi et al. 2009).

A statistical error model was developed for both

versions of PR algorithms to separate conditional biases

and random discrepancies as a function of reference

rainfall rate. The PR residuals are confirmed to be quite

large. Further research is needed to determine the rel-

ative contribution of aforementioned error factors and

other potential sources of error like reference accuracy

or time/space mismatching. To provide feedback to al-

gorithm designers, a preliminary study on identifiable

error sources in PR rainfall estimates like rainfall type

classification and NUBF was conducted. It confirmed

that the overestimation at lighter rain rates mainly

comes from the convective Z–R relationship and un-

derestimation at high rain rates is related to NUBF ef-

fects. The positive impact from the recalibration of

the Z–R relationships and from the NUBF correction

in version 7 is shown and quantified. Future work will

evaluate and quantify the relative contributions of PR

rainfall estimation errors linked to additional factors

such as off-nadir angle, NUBF, attenuation, and in-

fluence of the underlying terrain. Efforts are continuing

to improve the Q2 algorithm following the upgrade to

the NEXRAD network with dual-polarization capabil-

ity and to quantify the rain-rate uncertainty at hourly

and daily time scales. These details will be useful to al-

gorithm designers involved in the to-be-launched Global

Precipitation Measurement (GPM) mission.
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